Spline Interpolation

A spline function consists of polynomial pieces on sub internals. They are joined together ma way that satisfies continuity conditions.
(on $\frac{\left[t_{i-1}, t_{i}\right)}{S l}$, S is a polynomial of degue $\leqslant k$ - 5 has a continuous $(k-1)^{s)^{\text {P }} \text { derivature }}$ on $\underline{\underline{\left[l_{0}, t_{n}\right]}}$
e.g. Spline of degree 0 : piecewise constant Spline of degree 1: piecewise lear

Cubic Splines (Splines with degree $k=3$)
Denote by $S(x)$ the cubic spline interpolating some data $\left(t_{i}, y_{i}\right), 0 \leqslant i \leqslant n$

$$
\begin{aligned}
& S(x)=\left[\begin{array}{ll}
S_{0}(x) & x \in\left[t_{0}, t_{1}\right] \\
S_{1}(x) & x \in\left[t_{1}, t_{2}\right] \\
\vdots & \vdots \\
S_{n-1}(x) & x \in\left[t_{n-1}, t_{n}\right]
\end{array}\right. \\
& \text { So } S_{i-1}\left(t_{i}\right)=S_{i}\left(t_{i}\right)\left(=y_{i}\right) \text { for } i=1, \ldots, n-1
\end{aligned}
$$

we also ask that $S^{\prime} \& S^{\prime \prime}$ are continuous

Is this possible?

- we have 2-equations per $S_{i}: S_{i}\left(t_{i}\right)=y_{i}$ $\& S_{i}\left(t_{i+1}\right)=y_{i+1}$
$\Rightarrow 2 n$ equations
- we also have $S_{i}^{\prime}\left(t_{i}\right)=S_{i-1}^{\prime}\left(t_{i}\right)$ for $i=1,-, n-1$
$\Rightarrow 2(n-1)$ equation $S_{i}^{\prime \prime}\left(t_{i}\right)=S_{i-1}^{\prime \prime}\left(t_{i}\right)$ for $i=1,-, n-1$
\Rightarrow Total of (4n-2 equations)
But each $S_{i}(x)$ has 4-degrees of freedom
$\left(a+b x+c x^{2}+d x^{3}\right)$
$\Rightarrow 4 n$-unknowns

Were left with 2 degrees of freedom.

OK, let's now figure out the S_{i} 's.

- Let $z_{i}=S_{i}^{\prime \prime}\left(t_{i}\right) \quad\left(z_{i}=\lim _{x \rightarrow t_{i}^{+}} S^{\prime \prime}(x)=\lim _{x \rightarrow t_{i}^{*}}\left(S^{\prime \prime}(x)\right)\right.$ $i=1, —, n-1$)
moreone $S_{i}^{\prime \prime}(x)$ is a lien function with $S_{i}^{\prime \prime}\left(t_{i}\right)=z_{i}, S_{i}^{\prime \prime}\left(t_{i+1}\right)=z_{i+1}$

So

$$
(S_{i}^{\prime \prime}(x)=\underbrace{\frac{t_{i+1}-x}{t_{i+1}-t_{i}}}_{h_{i}} \cdot z_{i}+\frac{x-t_{i}}{t_{i+1}-t_{i}} \cdot z_{i+1})
$$

$$
\Rightarrow S_{i}(x)=\frac{z_{i}}{6 h_{i}}\left(t_{i+1}-x\right)^{3}+\frac{z_{i+1}}{6 h_{i}}\left(x-t_{i}\right)^{3}+C\left(x-t_{i}\right)+D\left(t_{i}-x\right)
$$

constants of integration
To find $C \& D: S_{i}\left(t_{i}\right)=y_{i}, \quad S_{i}\left(t_{i+1}\right)=y_{i+1}$

$$
\Rightarrow C=\left(\frac{y_{i+1}}{h_{i}}-\frac{z_{i+1} h_{i}}{6}\right) \& D=\frac{y_{i}}{h_{i}}-\frac{z_{i} h_{i}}{6}
$$

- Now, to find the z_{i}^{\prime} 's note that $S_{i-1}^{\prime}\left(t_{i}\right)=S_{i}^{\prime}\left(t_{i}\right)$

Differentiate the expressions for $S_{i}(x), S_{i-1}(x)$ and plying in t_{i} :

$$
\begin{aligned}
\Longrightarrow h_{i-1} z_{i-1}+2\left(h_{i}+h_{i-1}\right) z_{i}+h_{i} z_{i+1} & =\frac{6}{h_{i}}\left(y_{i+1}-y_{i}\right) \\
& -\frac{6}{h_{i-1}}\left(y_{i}-y_{i-1}\right)
\end{aligned}
$$

$\Rightarrow n+1$ unknowns $\left(z_{0}-z_{n}\right)$
$n-1$ equations
Simply set $z_{0}=0, z_{n}=0$ and solve for the rest \Rightarrow natural cubic spline

Theorem: Let $f \in C^{2}[a, b]$ \& let
$a=t_{0}<t_{1}<t_{2} \leqslant \cdots t_{n}=b$. If $S_{\text {is the natural }}$ cubic spline interpolating f at $t_{i}, i=0, \rightarrow n-1$
then $\int_{a}^{b}\left(S^{\prime \prime}(x)\right)^{2} d x \leqslant \int_{a}^{b} f^{\prime \prime}(x)^{2} d x$
r awengall ft_{5} s that fit the date S is the "Smoothest"

Let $g:=f-s \Leftrightarrow f=g+s$

If we can show that $\int_{a}^{b} g^{\prime \prime} s^{\prime \prime} d x$ is $\geqslant 0$ we are done

$$
\int_{a}^{b} g^{\prime \prime}(x) s^{\prime \prime}(x) d x=\sum_{i=0}^{n} \int_{t_{i-1}}^{t_{i}} g^{\prime \prime}(x) s^{\prime \prime}(x) d x
$$

Integration by ports: $\left(g^{\prime} s^{\prime \prime}\right)^{\prime}=g^{\prime \prime} s^{\prime \prime}+g^{\prime} s^{\prime \prime}$

$$
\begin{aligned}
& \Rightarrow \int_{t_{i=1}}^{t_{i}} g^{\prime \prime} s^{\prime \prime}=\int_{t_{i=1}}^{t_{i}}\left(g^{\prime \prime} s^{\prime}\right)^{\prime}-\int_{t_{i-1}}^{t_{i}} g^{\prime} s^{\prime \prime \prime}=\left(g^{\prime} s^{\prime \prime}\right)\left(t_{i}\right)-\left(g^{\prime} s^{\prime \prime}\right)\left(t_{i-1}\right) \\
& -\int_{t_{i}-1}^{t_{i}} g^{\prime} s^{\prime \prime \prime} \\
& \left(g^{\prime} s^{\prime \prime}\right)(b)-\left(g^{\prime} s^{\prime \prime}\right)(a)=0 \\
& \Rightarrow \sum_{i=0}^{n} \int_{t^{\prime}}^{t_{i}} g^{\prime \prime}(x) s^{\prime \prime}(x) d x=\sum_{i=0}^{n}\left(g^{\prime} s^{\prime}\right)\left(t_{i}\right)-\left(s^{\prime} s^{\prime \prime}\right)\left(t_{i-1}\right) \begin{array}{l}
\text { bel } \\
s^{\prime \prime}(1) \\
=s^{\prime \prime}(b) \\
=0
\end{array} \\
& -\sum_{i=0}^{n} \int_{t i=1}^{t_{i}} g^{\prime} s_{i}^{\prime \prime \prime} \\
& =-\sum_{i=0}^{n} c_{i} \int_{t_{i=1}}^{t_{i}} g^{\prime}(x) d x=-\sum_{i=0}^{n} c_{i}\left[g_{\left(t_{i}\right)}-g_{\substack{\left(t_{i-1}\right) \\
\vdots \\
=0}}\right] \\
& f\left(t_{1}\right)-S\left(t_{i}\right) \\
& =0!
\end{aligned}
$$

